UNIT 2 CONTENTS

Describing the Shape of the Data

Investigation 1
Multiplication Combinations of 3s, 6s, and 12s Daily Practice 1
Party Supplies Daily Practice 2
Related Multiplication Combinations Homework 3
Factors Daily Practice 5
How Many Cavities? Homework 6
Comparing the Heights of First and Fourth Graders 7
Counting Around the Class Daily Practice 8
Things That Come in Groups Daily Practice. 9
Investigation 2
Developing a Survey Question 10
Peanut Count Dally Practice 13
How Many Cubes Can Students Grab? Homework 15
Interesting Plot Daily Practice 17
Missing Factors Homework 18
Related Multiplication Combinations Daily Practice 19
What Did You Learn From Your Survey? 20
Division With Remainders Daily Practice. 22
Arranging Cans of Juice Homework 23
Mystery Data A 25
Mystery Data B 26
Mystery Data C 27
Parking Lot Data Daily Pracice 28
Things That Come in Groups Homework. 29
Comparing WNBA Players' Points Per Game 31

UNIT 2 CONTENTS (continued)

How Heavy is Your Pumpkin? Daily Pratice 33
Is This a Good Game? 34
Multiplication Pairs Daily Practice 36
Height Comparisons Homework 37
Investigation 3
How Many People Counted? Daily Pratitie 39
Creating a Likelihood Line Homework. 41
Placing Events on the Likelihood Line 43
Comparing Test Scores Daily Practice 45
Counting Around the Class Homevork. 46
Record of Cubes in a Bag 47
Arranging Cans of Juice Daily Praticie. 48
Comparing Probability Experiments 49
Leg Riddles Daily Practice. 51
Don't Miss the Bus! Daily Practice 52

Multiplication Combinations of $3 \mathrm{~s}, 6 \mathrm{~s}$, and 12 s

1. Solve these problems.

$$
\begin{array}{rll}
1 \times 3= & & \\
2 \times 3= & 1 \times 6= & \\
3 \times 3= & & \\
4 \times 3= & 2 \times 6= & 1 \times 12= \\
5 \times 3= & & \\
6 \times 3= & 3 \times 6= & \\
7 \times 3= & & \\
8 \times 3= & 4 \times 6= & 2 \times 12= \\
9 \times 3= & & \\
10 \times 3= & 5 \times 6= & \\
11 \times 3= & & \\
12 \times 3= & 6 \times 6= & 3 \times 12=
\end{array}
$$

2. What patterns do you notice?
3. Ask someone at home to help you practice the multiplication combinations that you are working on.

Party Supplies

Solve each of the story problems below.

1. Ms. Ruiz bought 13 packages of cups for a big party. Each package contains 8 cups. How many cups did she buy?
2. Ms. Ruiz bought 9 packages of plates for the party. Each package contains 12 plates. How many plates did she buy?
3. Ms. Ruiz bought 7 packages of napkins for the party. Each package contains 16 napkins. How many napkins did she buy?

Ongoing Review

4. Which product is greater than 70 ?
A. 7×9
C. $5 \times$
11
B. 6×12
D. 8×8

Related Multiplication Combinations

Solve each set of related problems below.

NOTE Students solve sets of related multiplication combinations. Encourage them to solve each problem mentally.

SMH 29-34

1. $\begin{array}{r} 5 \times 7= \\ 10 \times 7= \end{array}$ \qquad \qquad	2. $\begin{aligned} & 9 \times 10= \\ & 9 \times 12= \end{aligned}$	3. $\begin{aligned} & 7 \times 6= \\ & 7 \times 7= \end{aligned}$
4. $\begin{aligned} & 4 \times 8= \\ & 8 \times 8= \end{aligned}$ \qquad \qquad $12 \times 8=$ \qquad	5. $\begin{aligned} 4 \times 6 & = \\ 8 \times 6 & = \\ 12 \times 6 & = \end{aligned}$	6. $\begin{aligned} & 6 \times 8= \\ & 7 \times 8= \\ & 8 \times 8= \end{aligned}$
7. $10 \times 10=$ \qquad $11 \times 11=$ \qquad $12 \times 12=$ \qquad	8. $\begin{aligned} & 12 \times 3= \\ & 12 \times 6= \\ & 12 \times 9= \end{aligned}$	9. $\begin{aligned} & 6 \times 6= \\ & 8 \times 6= \end{aligned}$ \qquad \qquad $10 \times 6=$ \qquad
10. $\begin{aligned} & 11 \times 4= \\ & 11 \times 6= \\ & 11 \times 10= \end{aligned}$	11. $\begin{aligned} & 7 \times 5= \\ & 7 \times 6= \\ & 7 \times 11= \end{aligned}$ \qquad \qquad \qquad	12. $\begin{aligned} & 9 \times 5= \\ & 9 \times 7= \\ & 9 \times 9= \end{aligned}$

O Pearson Education 4

Factors

For each of the following numbers, list as many pairs of factors as you can.

NOTE Students practice multiplication combinations ("facts") by finding pairs of factors for a given product.

SMH 22, 23

How Many Cavities?

How many cavities have you had?
NOTE Students are gathering data about the number of cavities they have had for a class data collection.

SMH 87

Comparing the Heights of First and Fourth Graders

1. How do the heights of the first-graders compare with the heights of the fourth graders in your class? Write three statements about this question.
In your statements include ideas about the data such as these: Where are there lots of data? How big are clumps of data? What are the tallest heights and the shortest heights? What outliers are there? What do you think are the typical heights of first graders and of fourth graders?
a. \qquad
b.
c.
\qquad
\qquad
2. About how much taller do you think a fourth grader is than a first grader? Why do you think so? Support your ideas with evidence from the data.

Counting Around the Class

1. Mr. Patel's students counted by 5 s . The first person said 5 , the second said 10 , and the third said 15 . Each student said one number. How many students counted to get to 100 ? \qquad How do you know?
2. Ms. Bailey's students counted by 10 s. The first person said 10 , the second said 20 , and the third said 30 .
Each student said one number.
a. How many students counted to get to 270 ?

How do you know?
b. When Ms. Bailey's students counted by 10 s, did anyone say the number 225 ? \qquad
How do you know?

Ongoing Review

3. Which has the same product as 3×12 ?
A. 8×4
B. 6×24
C. 6×6
D. 9×6

Things That Come in Groups

Solve the story problems below. Write a multiplication equation for each problem and show how you solved it.

NOTE Students practice multiplication by solving story problems.

SMH 16, 17

Spiders have 8 legs.

1. How many legs are on 5 spiders? \qquad

Equation: $\quad 5 \times 8=$
2. How many legs are on 11 spiders? \qquad

Equation: \qquad
3. How many legs are on 16 spiders? \qquad

Equation:

Ongoing Review

4. Which is not a factor of 54 ?
A. 3
B. 6
C. 8
D. 9

Developing a Survey Question (page 1 of 3)

1. Choose a survey question.

Think about a question that will:

- Help you compare two groups of people.
- Result in numerical data.
- Give you data that you are interested in.
- Help you find out something that you don't know.

Decide on a question for your survey. Write your question.
2. Try out and revise your question.

Ask three students your survey question. Talk with them and your partner about making changes to your question.

Think about the following:

- Did the students understand your question?
- Were they able to respond to your question without further explanation from you?
- Did their responses give you the information you were interested in?

If you revise your question, write it here.
\qquad
\qquad

Developing a Survey Question (page 2 of 3)

3. Plan your survey and make predictions.
a. You will compare the responses to your question from two groups of students. Which two groups of students will you compare?
\qquad
\qquad
\qquad
b. What do you want to find out from comparing these two groups of students?
\qquad
\qquad
\qquad
\qquad
c. What do you predict you will find when you compare the responses of these two groups of students? Why do you think this will be the result?
\qquad
\qquad
\qquad

Describing the Shape of the Data

Developing a Survey Question (page 3 of 3)

4. Plan how to collect and record your data.

Think about the following:

- How are you going to record the data as you collect them?
- What information do you need to write?
- How are you going to keep track of which people you have asked?
- Who is going to do what?

Write how you will record and keep track of your data.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Peanut Count

Each of the students in Mr. Herrera's class took a

NOTE Students represent data in a line plot.

SMH 88-89 handful of trail mix and counted the number of peanuts.

1. Make a line plot of the data.

Peanut			
Count			
Benson	8	Yuson	6
Yuki	5	Anna	7
Noemi	6	Helena	9
Derek	13	LaTanya	8
Bill	10	Marisol	9
Abdul	9	Andrew	8
Steve	8	Ursula	10
Damian	8	Sabrina	6
Lucy	8	Richard	6

2. If you took a handful of the same trail mix, how many peanuts do you think you would get? Explain why you think so.

Ongoing Review

3. What is the highest number of peanuts a student counted?
A. 13
B. 7
C. 6
D. 5

© Pearson Education 4

How Many Cubes Can Students Grab? (poge 1 of 2)

Students in a third-grade class collected data about how many cubes kindergarteners and third graders

NOTE In this homework, students look carefully at the shapes of two different sets of data and compare them.

SMH 94-97 could grab with one hand. They put their data in two bar graphs.

Kindergarteners

Number of Cubes Grabbed in One Hand

Third Graders

How Many Cubes Can Students Grab? ${ }_{\text {(page }} 2$ of 2$]$

1. Write three statements about the number of cubes third graders and kindergartners grabbed.
a. \qquad
b. \qquad
\qquad
C. \qquad
\qquad
2. How many cubes would you say a kindergartner typically grabs? Why would you say this is typical?
\qquad
\qquad
3. How many cubes would you say a third grader typically grabs? Why would you say this is typical?

Interesting Plot

Ollie counted the number of houses on each block between home and school. The line plot shows Ollie's data.

NOTE Students describe features of a set of data on a line plot.

SMH 88, 89, 90, 91

1. What seems to be the typical number of houses? Explain why you think so.
\qquad
\qquad
\qquad
\qquad
2. An outlier is a piece of data that "lies outside" the rest of the data. Are there any outliers? If so, what is it and what might account for this unusual piece of data?
\qquad
\qquad
\qquad

Ongoing Review

- 3. How many blocks have 11 houses?
A. 1
B. 2
C. 3
D. 4

Missing Factors

Fill in the missing factors in these problems.

NOTE Students practice multiplication combinations ("facts") in related sets.

SMH 29-34

1. $\begin{aligned} & 6 \times \ldots=36 \\ & 6 \times \longrightarrow=72 \end{aligned}$	2. $\begin{aligned} & 9 \times \ldots=36 \\ & 9 \times \ldots=72 \end{aligned}$	3. $\begin{array}{r} \times 12=36 \\ \times 12=72 \end{array}$
4. $\begin{array}{r} \times 8=48 \\ \times 8=88 \end{array}$	5. $\begin{aligned} & 11 \times==44 \\ & 11 \times \ldots=88 \end{aligned}$	6. $\begin{aligned} & 6 \times \ldots=48 \\ & 6 \times \ldots=54 \end{aligned}$
7. $\begin{array}{ll} 9 \times & =45 \\ 9 \times & =54 \\ 9 \times & =63 \end{array}$	8. \qquad $\times 7=21$ \qquad $\times 7=42$ \qquad $\times 7=84$	9. \qquad $\times 8=40$ \qquad $\times 8=48$ \qquad $\times 8=56$
10.	11. $\begin{aligned} & 6 \times \\ & 8 \times \\ & 8 \times \\ & 12 \times \\ & =36 \\ & = \end{aligned}$	12. \qquad $\times 12=48$ \qquad $\times 12=60$ \qquad $\times 12=108$

Related Multiplication Combinations

NOTE Students practice multiplication combinations ("facts") in related sets.

SMH 29-34

Solve the following problems.

1. $\begin{aligned} & 5 \times 8= \\ & 10 \times 8= \end{aligned}$	2. $\begin{aligned} & 11 \times 10= \\ & 11 \times 12= \end{aligned}$	3. $\begin{aligned} & 7 \times 4= \\ & 7 \times 8= \end{aligned}$
4. $\begin{aligned} & 4 \times 6= \\ & 8 \times 6= \\ & 12 \times 6= \end{aligned}$	5. $\begin{aligned} & 4 \times 9= \\ & 8 \times 9= \\ & 12 \times 9= \end{aligned}$	6. $\begin{aligned} & 6 \times 6= \\ & 7 \times 7= \\ & 8 \times 8= \end{aligned}$
7. $\begin{aligned} & 10 \times 12= \\ & 11 \times 12= \\ & 12 \times 12= \end{aligned}$	8. $\begin{aligned} & 8 \times 3= \\ & 8 \times 6= \\ & 8 \times 9= \end{aligned}$	9. $\begin{aligned} & 6 \times 6= \\ & 8 \times 6= \\ & 10 \times 6= \end{aligned}$
10. $11 \times 5=$ \qquad $11 \times 6=$ \qquad $11 \times 11=$ \qquad	11. $\begin{aligned} & 7 \times 5= \\ & 7 \times 6= \\ & 7 \times 12= \end{aligned}$	12. $\begin{aligned} & 12 \times 5= \\ & 12 \times 7= \\ & 12 \times 9= \end{aligned}$

What Did You Learn From Your Survey? (poge 1 of 2)

1. What was your survey question?
2. Suppose that a teacher was interested in your survey and asked, "What did you learn from your survey?" Write at least three things you learned. Give evidence from the data.

What Did You Learn From Your Survey? (page 2 of 2)

3. How did the results of your survey compare with your predictions?
\qquad
\qquad
\qquad
\qquad
4. Now that you have learned some things about your question, can you think of some other survey questions that you would ask to learn more about this topic?
\qquad
\qquad
\qquad
\qquad
\qquad
5. What else did you learn about data investigations from doing this project?
\qquad
\qquad

Division With Remainders

1. Fifty people are waiting in line for the roller coaster. Each car holds 8 people. How many cars will the 50 people fill?
Division equation: \qquad \div \qquad $=$ \qquad
\qquad
2. Forty people bought tickets for a boat ride. Twelve people can ride in a boat at a time. How many boats will the 40 people fill?
Division equation: \qquad \div \qquad $=$ \qquad Answer: \qquad
3. How many prizes could you get with 50 tickets?
Division equation:
\qquad
\qquad

$$
=
$$

\qquad
Answer: \qquad

4. The students in Mr. Brown's class counted around the class by 5 s. Each student said one number. The number they ended with was 65 . How many students counted?
Division equation: \qquad \div \qquad Answer: \qquad

Ongoing Review

5. The students in Ms. Jones' class counted around the class by 4 s . Each student said one number. There are 29 students in her class. Which of these numbers did they say?
A. 120
B. 100
C. 50
D. 10

Arranging Cans of Juice (page 1 of 2)

NOTE Students find factors by arranging numbers into rectangular arrays.

SMH 18, 23

Solve the following problems.

1. a. You have 28 cans of juice. Show all of the ways you can arrange these cans into arrays. Draw the arrays in the space below.
b. List all of the factors of 28 .

Arranging Cans
 of Juice (page 2 of 2)

2. a. Mauricio has 42 cans of juice. Show all of the ways he can arrange his cans into arrays. Draw the arrays in the space below.
b. List all of the factors of 42 .

Mystery Data A

The table and graph below show the same data.
These data represent some group of living things.

Individual	Inches	Individual	Inches	Individual	Inches
A	84	I	84	Q	81
B	83	J	84	R	79
C	78	K	85	S	75
D	75	L	82	T	76
E	90	M	78	U	83
F	77	N	83	V	81
G	75	\bigcirc	72	W	78
H	81	P	80	X	78
$x \stackrel{x}{x} \times \times \times$					
$x \quad \begin{array}{llll}x & x & x \\ x\end{array}$					
\times	$\times$$\times$$\times$	\times	$\times{ }^{x}$	\times	\times
		$\times \times \times \times$	$\times \times$		
1-1	$\underline{+1}$	-1-1	+	+	+
717273	7576	7787980	8283	48586878	8990
Heights	engths of	Members of	Group of	ing Things i	ches

1. What is the median height or length of this group?

Are the data clustered around the median or spread out?
\qquad
\qquad
2. What do you think the group could be? Give reasons for your answer.
\qquad
\qquad
\qquad

Describing the Shape of the Data

Mystery Data B

The table and graph below show the same data.
These data represent some group of living things.

Individual	Inches	Individual	Inches	Individual	Inches
A	78	G	86	M	84
B	96	H	93	N	80
C	114	I	64	O	72
D	94	J	54	P	54
E	63	K	72	Q	79
F	72	L	108	R	116

Heights or Lengths of Members of a Group of Living Things in Inches

1. What is the median height or length of this group?

Are the data clustered around the median or spread out?
\qquad
\qquad
2. What do you think the group could be? Give reasons for your answer.
\qquad
\qquad

Describing the Shape of the Data

Mystery Data C

This information is about a group of living things:

- The median height or length of these living things is 19.5 inches.
- The shortest height or length in this group is 18 inches.
- The tallest height or length in this group is 22 inches.
- There are 30 individuals in this group.

1. Make a line plot of the heights or lengths of these living things. Decide where you think the 30 pieces of data might belong, according to the information above.
2. What do you think the group could be? Give reasons for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

Parking Lot Data

The students in Ms. May's class counted the cars in the school parking lot at the beginning of every

NOTE Students represent and describe a set of data.

SMH 88-91 school day for a month.

1. Represent the data in a table, a line plot, or with tallies.

Number of Cars in the Parking Lot

18	23	22	25	20
23	19	17	24	23
22	23	25	24	24
22	23	22	24	25

2. Describe the data. Try to include a discussion of the range, how it clumps or spreads out, whether there are any outliers, and what is typical.
\qquad
\qquad
\qquad
\qquad

Ongoing Review

3. What is the median number of cars in the parking lot?
A. 20
B. 21
C. 22
D. 23

Things That Come in Groups

Solve the story problems below. Write a multiplication equation for each problem, and show how you solved it.

NOTE Students solve multiplication problems and write an equation to represent each problem.

SMH 16, 17

Insects have 6 legs.

1. How many legs do 9 insects have? \qquad

Equation: \qquad
2. How many legs do 11 insects have? \qquad

Equation: \qquad
3. How many legs do 20 insects have?

Equation: \qquad

Yolanda Griffith and Mwadi Mabika both played basketball in the WNBA (Women's National Basketball Association). They each scored points during most of the games they played in the 2003 season. Here is a line plot of the points Mabika scored in each of the 40 games she played in the 2003 season:

Points Mabika Scored per Game
Below are the points Griffith scored during each of the 39 games she played in the 2003 season. Make a line plot of her points per game:

10	15	12	17	20	27	17	12	10	8	19	19	19	6	7	12	16	12	16	21
22	22	11	24	20	15	17	17	18	7	27	15	22	13	6	4	15	11	7	

Comparing WNBA Players' Points Per Game (page 2 of 2)

1. What is the median of Mabika's points per game?

How did you figure out the median?
\qquad
\qquad
\qquad
2. What is the median of Griffith's points per game?

How did you figure out the median?
\qquad
\qquad
\qquad
3. How do the number of points Griffith scored in the games she played in the 2003 season compare with the number of points Mabika scored? Write at least three statements that compare Mabika's points-pergame with Griffith's points-per-game.
Consider where the data are concentrated, the highest and lowest numbers of points scored, the outliers, and the medians.

1. \qquad
2. \qquad
3. \qquad
\qquad

How Heavy is Your Pumpkin?

NOTE Students practice representing and describing data.

SMH 88-93

Damian grew eighteen pumpkins and recorded their weights when he picked them.

1. Organize the data in a line plot or other graph.

2. Describe how the data is spread out by finding the median and other measures, such as the range. Discuss whether you think the median alone provides a good description of the data and why.
\qquad
\qquad
\qquad
\qquad

Ongoing Review

3. Half of the pumpkins weigh less than
A. 5 pounds
B. 4 pounds
C. 3 pounds
D. 2 pounds

Is This a Good Game? (page 1 of 2)

Use Mabika's and Griffith's points per game to answer the following questions.

1. Barney, who is a big fan of Mwadi Mabika, went to her game on May 28. Mabika scored 10 points. Barney wants to know whether this was a good game or a bad game for Mabika. What is your opinion? Use the data to support your opinion.
\qquad
\qquad
\qquad
2. Venetta, who is a big fan of Yolanda Griffith, went to her game on July 5. Griffith scored 17 points. Venetta wants to know whether this was a good game or a bad game for Griffith. What is your opinion? Use the data to support your opinion.
3. Suppose that you were an owner of a team who was thinking about hiring Mwadi Mabika or Yolanda Griffith. As you decide whom to hire, one of the things you want to look at carefully is the player's points per game. According to their point scoring data, which player do you think you might hire for your basketball team? Why?

Is This a Good Game? ${ }_{\text {(page } 2 \text { of } 2)}$

4. Suppose that a sports reporter is writing a story comparing the points Yolanda Griffith and Mwadi Mabika scored during the 2003 season. The reporter is planning to report their median scores. What can the reporter's readers learn from a comparison of their median scores?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. Do you think this is enough information for readers to know about Griffith's and Mabika's scoring records? If not, what other information do you think the reporter should include?
\qquad
\qquad
\qquad
\qquad
\qquad

Multiplication Pairs

1. Solve each pair of multiplication problems below.

Use the first problem to help you solve the second problem.

$12 \times 8=$ \qquad $24 \times 8=$ \qquad	$15 \times 6=$ \qquad $30 \times 3=$ \qquad
$15 \times 4=$	$9 \times 9=$
$15 \times 8=$	$18 \times 9=$
$32 \times 5=$	$8 \times 6=$
$16 \times 10=$	$16 \times 6=$

Ongoing Review

2. Which of the following does not equal 12×8 ?
A. 24×4
B. 2×48
C. 3×28
D. 6×16

Height Comparisons (page 1 of 2)

A few days ago, you looked at some heights and lengths of different animals and people. Look at the following heights and lengths:

NOTE Students use a set of data to answer questions about the lengths or heights of members of a group of living things.

SMH 11-12
Homework

Names	Heights/Lengths
Vince Carter (basketball player)	78 inches
Shaquille O'Neal (basketball player)	85 inches
Baby 1	18 inches
Baby 2	22 inches
Fourth grader	64 inches
Shannon (boa constrictor)	116 inches
Black cottonwood (tree)	1,764 inches

1. Who is the taller basketball player?

Who is the shorter baby?
How much taller is the taller basketball player than the shorter baby? \qquad Show your work.

Height Comparisons
 (page 2 of 2)

2. Look at the fourth grader and Shannon. How much longer is Shannon than the fourth grader is tall? \qquad Show your work.
3. How tall are you? \qquad Find someone
or something that is at least $20^{\prime \prime}$ taller than you.
What is it? \qquad How much taller
is it? \qquad Show your work.
4. Look at the black cottonwood and the fourth grader. How much taller is the black cottonwood than the fourth grader? \qquad Show your work.

How Many People Counted?

In these counting problems, each student said one number.

NOTE Students find the multiples of a given number and solve multiplication problems.
SMH 25

1. The students in Ms. Alonzo's class counted by 20 s. The first student said 20 , the second student said 40 , and the third said 60.
How many students counted to get to 300 ? \qquad How do you know?
2. The students in Mr. Nelson's class counted by 15 s . The first student said 15 , the second student said 30, and the third said 45 . How many students counted to get to 300 ? \qquad How do you know?
3. The students in Ms. Weinberg's class counted by 25 s . The first student said 25 , the second student said 50 , and the third student said 75.
a. How many students counted to get to 300 ?

How do you know?
b. When the students in Ms. Weinberg's class counted by 25 s , did anyone say the number 180 ? \qquad How do you know?

\%		\square	\square	\square	\cdots		-	T
宾		-				-		
						-		
		-						
		-				-		
		-		-				
		-						
		-						

© Pearson Education 4

Creating a Likelihood Line (page 1 of 2)

Think about the neighborhood in which you live.

NOTE Students are beginning a study of probability. They are placing events according to their likelihood.

SMH 98

Can you think of any events in the future that you are certain will happen? Write them on the likelihood line on the next page.

Add any events that would be impossible.
Now add a few events that are unlikely to occur, that maybe will occur, and that are likely to occur. You may want to ask family members or friends to help you think of events and where they might go on the line.

Now answer the questions below. Use examples from your Likelihood Line.

1. If something is unlikely to happen, does this mean that it will never happen? \qquad
What would you think if it did happen?
\qquad
\qquad
2. If something is likely to happen, does this mean that it will always happen? \qquad
What would you think if it did not happen?
\qquad
\qquad
\qquad
\qquad

Creating a Likelihood
 Line (page 2 of 2)

Placing Events on the Likelihood Line (page 1 of 2)

Put the letter of each event on the Likelihood Line above.
Explain your reasoning.

1. Event A The probability of flipping a coin and getting heads.
Explain why you put it where you did.
\qquad
\qquad
2. Event B The probability of rolling a number cube and getting a 6 .
Explain why you put it where you did.
\qquad
\qquad
3. Event C The probability of rolling a number cube once and getting either a 1 , a 2 , or a 3 .
Explain why you put it where you did.

Placing Events on the Likelihood Line (page 2 of 2

4. Event \mathbf{D} the probability of pulling a blue cube out of a bag that contains 1 red cube and 99 blue cubes.
Explain why you put it where you did.
5. Event \mathbf{E} the probability of pulling a girl's name out of a container that holds the names of all of the students in the class.
Explain why you put it where you did.
\qquad
\qquad
6. Event \mathbf{F} the probability of pulling a boy's name out of the same container.
Explain why you put it where you did.
\qquad
\qquad
7. Event \mathbf{G} the probability of pulling your name out of the same container.
Explain why you put it where you did.
\qquad
\qquad

Comparing Test Scores

These line plots show two students' scores
NOTE Students order and find the median of data sets.

SMH 92-93 for 12 science tests.

Anna's Science Tests

Jill's Science Tests

1. Find the median score for each student.

Anna \qquad Jill \qquad
2. Overall, which student do you think had better scores?
\qquad
Why do you think so?
\qquad
\qquad
\qquad
\qquad

Ongoing Review

3. On how many tests did Anna score more than 83 ?
A. 1
B. 3
C. 6
D. 7

Counting Around the Class

In these counting problems, each student said one number.

1. The students in Ms. Alonzo's class counted by 5s. The first student said 5 , the second student said 10 , and the third said 15 . How many students counted to get to 250 ? \qquad How do you know?
2. The students in Mr. Nelson's class counted by 10s. The first student said 10 , the second student said 20 , and the third said 30 . How many students counted to get to 250? \qquad How do you know?
3. a. The students in Ms. Weinberg's class counted by 25 s . The first student said 25 , the second student said 50 , and the third student said 75 . How many students counted to get to 250 ? \qquad How do you know?
b. When the students in Ms. Weinberg's class counted by 25 s, did anyone say 200 ? \qquad How do you know?

Record of Cubes in a Bag

1. Record how many of each color cube are in your bag.
\qquad red cubes \qquad blue cubes
2. Prediction: How many times do you think you will pull a red cube out of the bag?
3. Record which color you pull out on each trial.
4. Total number of red cubes: \qquad

Arranging Cans of Juice

1. a. You have 32 cans of juice. Show all the ways you can arrange these cans into arrays. Draw the arrays in the space below.
b. List all the factors of 32 .

NOTE Students find factors by arranging numbers into rectangular arrays.

SMH 23

2. a. Mauricio has 36 cans of juice. Show all the ways he can arrange his cans into arrays. Draw the arrays in the space below.
b. List all the factors of 36 .

Ongoing Review

3. Which number is prime?
A. 49
B. 27
C. 17
D. 9

Comparing Probability Experiments (page lof 2)

Experiment 1: 10 red cubes and 10 blue cubes

1. How many red cubes did you draw in 50 trials? \qquad
2. Did the number you got surprise you, or is it about what you expected? Why?
\qquad
\qquad
3. Look at the class line plot. What do you notice about the data for Experiment 1?
\qquad
\qquad

Experiment 2: 5 red cubes and 15 blue cubes

4. How many red cubes did you draw in 50 trials? \qquad
5. Did the number you got surprise you, or is it about what you expected? Why?
\qquad
\qquad
6. Look at the class line plot. What do you notice about the data for Experiment 2?
\qquad
\qquad
\qquad

Comparing Probability
 Experiments (page 2 of 2)

Experiment 3: 15 red cubes and 5 blue cubes

7. How many red cubes did you draw in 50 trials? \qquad
8. Did the number you got surprise you, or is it about what you expected? Why?
\qquad
\qquad
9. Look at the class line plot. What do you notice about the data for Experiment 3?
\qquad
\qquad
10. What do you notice when you compare the results from the three experiments?
\qquad
\qquad
\qquad

Leg Riddles

Birds have 2 legs.
Dogs have 4 legs.
Ladybugs have 6 legs.

NOTE Students solve multiplication and division problems in story problem contexts.

1. There are 48 legs, and they all belong to dogs. How many dogs are there?
2. There are 3 ladybugs, 7 dogs, and 13 birds in the house. How many legs are there altogether?
3. There are 36 legs in the house. All the legs belong to birds, dogs, and ladybugs. How many of each creature-birds, dogs, and ladybugs-might be in the house?
(There are many possible answers. How many can you find?)

Birds	Dogs	Ladybugs

Don't Miss The Bus!

Josh takes the bus to school every day. The bus is supposed to arrive at his stop at 7:30. For one month, Josh notes the times that the bus arrives in the morning. The table shows the data he collected.

$7: 30$	$7: 28$	$7: 31$	$7: 29$	$7: 36$
$7: 40$	$7: 31$	$7: 28$	$7: 35$	$7: 31$
$7: 36$	$7: 33$	$7: 35$	$7: 29$	$7: 31$
$7: 34$	$7: 36$	$7: 29$	$7: 33$	$7: 30$

1. Make a line plot of the data Josh collected. Remember to label your line plot.
2. What time will the bus most likely arrive? Why do you think so?
3. What time does Josh need to be at the bus stop to make sure he does not miss the bus? Use the data from the line plot to explain your thinking.
